47 research outputs found

    String Diagrammatic Trace Theory

    Full text link
    We extend the theory of formal languages in monoidal categories to the multi-sorted, symmetric case, and show how this theory permits a graphical treatment of topics in concurrency. In particular, we show that Mazurkiewicz trace languages are precisely symmetric monoidal languages over monoidal distributed alphabets. We introduce symmetric monoidal automata, which define the class of regular symmetric monoidal languages. Furthermore, we prove that Zielonka's asynchronous automata coincide with symmetric monoidal automata over monoidal distributed alphabets. Finally, we apply the string diagrams for symmetric premonoidal categories to derive serializations of traces.Comment: Paper accepted for MFCS 202

    String Diagrammatic Electrical Circuit Theory

    Full text link
    We develop a comprehensive string diagrammatic treatment of electrical circuits. Building on previous, limited case studies, we introduce controlled sources and meters as elements, and the impedance calculus, a powerful toolbox for diagrammatic reasoning on circuit diagrams. We demonstrate the power of our approach by giving comprehensive proofs of several textbook results, including the superposition theorem and Th\'evenin's theorem.Comment: 13 pages + appendices. Accepted for ACT202

    Resumptions, Weak Bisimilarity and Big-Step Semantics for While with Interactive I/O: An Exercise in Mixed Induction-Coinduction

    Full text link
    We look at the operational semantics of languages with interactive I/O through the glasses of constructive type theory. Following on from our earlier work on coinductive trace-based semantics for While, we define several big-step semantics for While with interactive I/O, based on resumptions and termination-sensitive weak bisimilarity. These require nesting inductive definitions in coinductive definitions, which is interesting both mathematically and from the point-of-view of implementation in a proof assistant. After first defining a basic semantics of statements in terms of resumptions with explicit internal actions (delays), we introduce a semantics in terms of delay-free resumptions that essentially removes finite sequences of delays on the fly from those resumptions that are responsive. Finally, we also look at a semantics in terms of delay-free resumptions supplemented with a silent divergence option. This semantics hinges on decisions between convergence and divergence and is only equivalent to the basic one classically. We have fully formalized our development in Coq.Comment: In Proceedings SOS 2010, arXiv:1008.190

    Monoidal Width

    Full text link
    We introduce monoidal width as a measure of complexity for morphisms in monoidal categories. Inspired by well-known structural width measures for graphs, like tree width and rank width, monoidal width is based on a notion of syntactic decomposition: a monoidal decomposition of a morphism is an expression in the language of monoidal categories, where operations are monoidal products and compositions, that specifies this morphism. Monoidal width penalises the composition operation along ``big'' objects, while it encourages the use of monoidal products. We show that, by choosing the correct categorical algebra for decomposing graphs, we can capture tree width and rank width. For matrices, monoidal width is related to the rank. These examples suggest monoidal width as a good measure for structural complexity of processes modelled as morphisms in monoidal categories.Comment: Extended version of arXiv:2202.07582 and arXiv:2205.0891

    Equational Characterization of Covariant-Contravariant Simulation and Conformance Simulation Semantics

    Get PDF
    Covariant-contravariant simulation and conformance simulation generalize plain simulation and try to capture the fact that it is not always the case that "the larger the number of behaviors, the better". We have previously studied their logical characterizations and in this paper we present the axiomatizations of the preorders defined by the new simulation relations and their induced equivalences. The interest of our results lies in the fact that the axiomatizations help us to know the new simulations better, understanding in particular the role of the contravariant characteristics and their interplay with the covariant ones; moreover, the axiomatizations provide us with a powerful tool to (algebraically) prove results of the corresponding semantics. But we also consider our results interesting from a metatheoretical point of view: the fact that the covariant-contravariant simulation equivalence is indeed ground axiomatizable when there is no action that exhibits both a covariant and a contravariant behaviour, but becomes non-axiomatizable whenever we have together actions of that kind and either covariant or contravariant actions, offers us a new subtle example of the narrow border separating axiomatizable and non-axiomatizable semantics. We expect that by studying these examples we will be able to develop a general theory separating axiomatizable and non-axiomatizable semantics.Comment: In Proceedings SOS 2010, arXiv:1008.190

    String Diagram Rewrite Theory III: Confluence with and without Frobenius

    Get PDF
    In this paper we address the problem of proving confluence for string diagram rewriting, which was previously shown to be characterised combinatorically as double-pushout rewriting with interfaces (DPOI) on (labelled) hypergraphs. For standard DPO rewriting without interfaces, confluence for terminating rewrite systems is, in general, undecidable. Nevertheless, we show here that confluence for DPOI, and hence string diagram rewriting, is decidable. We apply this result to give effective procedures for deciding local confluence of symmetric monoidal theories with and without Frobenius structure by critical pair analysis. For the latter, we introduce the new notion of path joinability for critical pairs, which enables finitely many joins of a critical pair to be lifted to an arbitrary context in spite of the strong non-local constraints placed on rewriting in a generic symmetric monoidal theory

    Span(Graph): a Canonical Feedback Algebra of Open Transition Systems

    Full text link
    We show that Span(Graph)*, an algebra for open transition systems introduced by Katis, Sabadini and Walters, satisfies a universal property. By itself, this is a justification of the canonicity of this model of concurrency. However, the universal property is itself of interest, being a formal demonstration of the relationship between feedback and state. Indeed, feedback categories, also originally proposed by Katis, Sabadini and Walters, are a weakening of traced monoidal categories, with various applications in computer science. A state bootstrapping technique, which has appeared in several different contexts, yields free such categories. We show that Span(Graph)* arises in this way, being the free feedback category over Span(Set). Given that the latter can be seen as an algebra of predicates, the algebra of open transition systems thus arises - roughly speaking - as the result of bootstrapping state to that algebra. Finally, we generalize feedback categories endowing state spaces with extra structure: this extends the framework from mere transition systems to automata with initial and final states.Comment: 48 pages, 33 figures, journal versio

    Interacting Frobenius Algebras are Hopf

    Full text link
    Theories featuring the interaction between a Frobenius algebra and a Hopf algebra have recently appeared in several areas in computer science: concurrent programming, control theory, and quantum computing, among others. Bonchi, Sobocinski, and Zanasi (2014) have shown that, given a suitable distributive law, a pair of Hopf algebras forms two Frobenius algebras. Here we take the opposite approach, and show that interacting Frobenius algebras form Hopf algebras. We generalise (BSZ 2014) by including non-trivial dynamics of the underlying object---the so-called phase group---and investigate the effects of finite dimensionality of the underlying model. We recover the system of Bonchi et al as a subtheory in the prime power dimensional case, but the more general theory does not arise from a distributive law.Comment: 32 pages; submitte

    A non-interleaving process calculus for multi-party synchronisation

    Full text link
    We introduce the wire calculus. Its dynamic features are inspired by Milner's CCS: a unary prefix operation, binary choice and a standard recursion construct. Instead of an interleaving parallel composition operator there are operators for synchronisation along a common boundary and non-communicating parallel composition. The (operational) semantics is a labelled transition system obtained with SOS rules. Bisimilarity is a congruence with respect to the operators of the language. Quotienting terms by bisimilarity results in a compact closed category

    General Reversibility

    Get PDF
    The first and the second author introduced reversible ccs (rccs) in order to model concurrent computations where certain actions are allowed to be reversed. Here we show that the core of the construction can be analysed at an abstract level, yielding a theorem of pure category theory which underlies the previous results. This opens the way to several new examples; in particular we demonstrate an application to Petri nets.
    corecore